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1. INTRODUCTION
Cataract surgeries rely heavily on selecting the appropriate intraocular lens (IOL) power,
which directly impacts postoperative visual outcomes. Traditional methods, such as the
Barrett and Hoffer Q formulas, primarily use biometric measurements while neglecting
preoperative image data, leading to limited accuracy. This study introduces a novel
multi-modal deep learning framework that integrates optical coherence tomography
(OCT) images with biometric data. Using RepLKNet as the backbone, along with cross-
layer attention (CLA) for multi-scale feature refinement and effective channel attention
(ECA) for multi-modal feature fusion, the proposed framework achieves a mean
absolute error of 0.367 diopters, outperforming other approaches significantly.

2. METHOD
2.1 Framework
As shown in Figure 1, the proposed framework has three components: a dual-branch
encoder, a fusion network, and a prediction head. OCT images are processed using
RepLKNet with cross-layer attention (CLA) , while biometric data is encoded by an
MLP. Effective channel attention (ECA) are used for feature extraction and fusion. The
fused features are then passed through fully connected layers for IOL power prediction.

Figure 1. Overview of the proposed multi-modal framework. For OCT images, we use a
large-kernel backbone with CLA to handle low-information density, while a simple MLP
processes the biometric data.

2.2 Image-Encoder

2.3 Biometric Data Encoding

As shown in Figure 2, OCT images have low-information density. To address this, the
image encoder uses RepLKNet with large kernels to capture relevant details. Cross-layer
attention (CLA) further enhances multi-scale feature extraction, preserving key
structural information.

Figure 2. Illustration of low-information density in OCT images. Most regions are with 
sparse or no useful information.

The biometric data encoding branch processes key measurements like axial length and
corneal curvature using an MLP. An auxiliary loss is applied during training to enhance
feature extraction. These features are then fused with OCT image data for multi-modal
integration.

Figure 3. Structure of the CLA module. “Feature 1” from last layer generates spatial
weights, while “Feature 2” represents the current layer‘s features.

2.4 Fusion Network

3. EVALUATION

2.3 Biometric Data Encoding
The biometric data encoding branch processes key measurements like axial length and
corneal curvature using an MLP. An auxiliary loss is applied during training to enhance
feature extraction. These features are then fused with OCT image data for multi-modal
integration.

The fusion network combines the features extracted from both the OCT images and
biometric data. After concatenation, the fused features are refined using effective
channel attention (ECA) to capture important multi-modal correlations. This
mechanism dynamically adjusts the feature importance across channels, enhancing the
overall representation.

Here, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 are the output given by the whole model, 𝑏𝑏𝑏𝑏𝑏𝑏_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 are the
predictions of biometric branch, and 𝑔𝑔𝑡𝑡𝑡𝑡 are the ground truths. 𝛼𝛼 is set to 0.5, 𝐿𝐿 is
training loss of the whole model.

3.1 Datasets and Metrics
We use a self-collected dataset of 174 eyes from 117 patients, including OCT images
and biometric measurements. The ground truth IOL power is determined by three
ophthalmologists. Model performance is evaluated using Mean Absolute Error (MAE),
Median Absolute Error (MedAE), and prediction accuracy, with an MAE within ±0.5
diopters considered clinically acceptable.

The proposed method is compared with other approaches on the collected dataset.

3.2 Quantitative Performance

3.3 Qualitative Analysis

Figure 5. Visualizations of input images
and CAMs. (a) and (b) are OCT images
from views 0 and 15, respectively. (c)
shows the stacked multi-view OCT
output, and (d) displays CAMs for view
0.

Figure 4. Visualization of feature importance
of each biometric data. The train and test
mean that the importance is calculated in the
train dataset and test dataset, respectively.

4. CONCLUSION
Our framework leverages multi-modal data to enhance IOL power prediction accuracy.
By combining OCT images and biometric data, it significantly outperforms traditional
methods. This approach offers insights for future advancements in IOL power
calculation and can be applied beyond this domain.
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